核心变量。以下是 benchmark suites,这样的设计也可以大致覆盖从 LeNet5 的 60 k 参数量,0.5 MFLOPs,到 ResNet-34 的 22 M 参数量,3.77 GFLOPs。 时间消耗的测试结果: 内存占用的测试结果: 基于以上数据,整体看目前的 zk 算法以及具备支持对大模型生成 proof 的可能性,但相应的成本依旧很高,需要甚至 10 倍以上的优化。以 Gloth16 为例,虽然受益于高并发带来的 computation time 的优化,但是作为 tradeoff 内存占用显著增加。Plonky2 和 zkCNN 在时间和空间上的表现同样验证了这一点。 那么现在问题其实就从 zkp system 是否可以支持链上 AI 转变为了支持 AI+Blockchain 付出代价值不值?并且随着模型参数的指数级上升,对 proof system 的压力也会迅速增加。确实,现在有 trustless 的神经网络吗,没有!就是因为成本算不过来。 因此,打造一个为 AI 定制化的 proof system 至关重要。同时,实现对 AI 这种单次调用计算十分复杂的逻辑,gas 的消耗模型也需重新设计,一个高性能的 zkvm 至关重要,但现在我们已经能看到很多高性能的尝试,比如 OlaVM, polygon Miden 等,这些基础设施的不断优化极大提升了 onchain-AI 的可行性。 三、应用是否值得期待? 尽管链上 AI 还在很早期阶段,用上面的分层来看可能只处于起始到发展之间,但 AI 这个方向从不缺乏优秀的团队和创新的想法。 就像上面说的,从 AI + Blockchain 发展阶段看现在市场处于起始到发展的中间阶段,产品尝试方向还是以基于现有功能对用户体验优化为主。但最能体现价值的还是通过 AI 在链上将 trustless 的主体由人变为工具,在安全性和效率上颠覆原有的产品形态。 下面从一些现有的应用尝试出发,分析一下 AI + Blockchain 长期的产品发展方向 1)The Rockefeller Bot:世界上第一个 on-chain AI Rockefeller 是 modulus lab 团队推出的第一个链上 AI 的产品,有很强的“纪念价值”。这个模型本质上是一个 trading bot,具体来说,rockefeller 的训练数据是大量链上公开的 WEth-USDC 的 price/exchange rate,其本身是一个三层前馈经网络模型,预测目标是未来 WEth 价格涨跌。 以下是当 trading bot 决策要进行交易时的流程: Rockefeller 在 ZK-rollup 上对预测结果生成 ZKP; ZKP 在 L1 上被验证(资金由 L1 的合约保管),并执行操作; 可以看出 trading bot 的预测、资金操作完全是去中心化且 trustless 的,就像上面提到的,从更高维度看 rockefeller 更像是一种全新的 Defi 玩法。相比于信任其他 trader,这种模式下其实用户赌的是 transparent + verifiable + autonomous 的模型。用户可以不需要信任中心化的机构确保模型决策过程的合法性。同时,AI 也能最大程度上的消除人性的影响,更果断地进行交易。 你可能已经想给 Rockefeller 注点资金玩一玩了,但这真的能赚钱吗? 并不能,按照 modulus 团队的说法,与其说 rockefeller 是一个应用,他更像是 on-chain AI 的 POC,由于成本、效率、证明系统等多方面的限制,rockefeller 的主要目的是作为一个 demo 让 web3 世界看到 on-chain AI 的可行性。(Rockefeller 已经完成任务下线 T T) 2)Leela:世界上第一个 on-chain AI game 最近发布的 Leela v.s. the world 同样是出自 modulus lab。游戏机制很简单,人类玩家组成阵营对战 AI。游戏中玩家可以质押下注,最终谁会赢得对局,每次 match 结束后 loser’s pool 会根据质押代币的数量相应地分配给 winner。 说到 on-chain AI,这次 modulus lab 部署了一个更大的 deep neural network (Parameter 数量 > 3,700,000)。虽然在模型规模和产品内容上 Leela 都超越了 rockefeller,但归根结底这还是一次大型的 on-chain AI experiment。Leela 的背后的机制和运行模式才是需要关注的,这能帮我们更好地理解链上 AI 的运行模式和改善空间,以下是官方给出的逻辑图: Leela 的每一次 move,也就是每次预测,都会生成 ZKP,并且只有在经过合约验证之后才会在游戏内生效。也就是说,受益于 trustless autonomous AI,用户下注的资金和公平性完全受到密码学的保护还不需要信任游戏开发者。 Leela 采用的是 Halo2 算法,主要原因是它的工具和设计的灵活性可以帮助设计更高效的证明体系,具体 performance 情况可以参考上面的测试数据。但同时在 Leela 的运行中 modulus 团队也发现了 Halo2 的弊端,比如生成证明的速度较慢,对 one-shot proving 不友好等。因此,也更加印证了之前基于测试数据得出的结论:如果需要将更大的模型带入 web3,我们需要开发更强大的 proof system。 不过 Leela 的价值在于给我们带来了 AI + Web3 game 更大的想象空间,王者荣耀玩家此刻应该无比希望王者匹配算法 fully on-chain:) Gamefi 需要更优质的内容支撑和更公平的游戏体系,而 on-chain AI 恰好提供了这一点。打个比方,在游戏中加入 AI-driven 的游戏场景或者 NPC,不管是玩家的游戏体验还是经济体系的玩法都提供了巨大的想象空间。 3)Worldcoin:AI + KYC Worldcoin 是一个链上身份体系(Privacy-Preserving Proof-of-Personhood Protocol),通过生物识别建立身份体系并实现支付等衍生功能,解决的问题是对抗女巫攻击,现在的注册用户超过了 1.4 m。 用户通过一个叫 Orb 的硬件扫描虹膜,将个人信息添加到数据库中,Worldcoin 通过 Orb 硬件中的计算环境运行 CNN 模型压缩并证实用户虹膜数据的有效性。听上去很强,但如果需要做到身份验证的真正去中心化,worldcoin 团队正在探索通过 ZKP 验证模型的输出。 挑战 值得一提的是,worldcoin 的 CNN 模型的 size:参数 = 1.8 million,层数 = 50。基于上面展示的测试数据,现有的 proof system 在时间上完全可以胜任,但内存消耗对于消费级的硬件来说是不可能完成的。 4)其他项目 Pragma:Pargma 是从 starkware 生态上发展起来的 ZK oracle。同时团队也在探索如何通过链上 AI 解决去中心化链下数据验证的问题。用户不再需要信任 validator,而是通过足够精准且可验证的链上 AI 完成验证链下 data source 的工作,比如对于实际资产或者身份的验证可以直接让 AI 去读取相印的物理信息作为输入并做出决策。 Lyra finance:Lyra finance 是一个 option AMM,提供衍生品交易市场。为了提高资本利用率,Lyra 团队和 modulus lab 正在合作开发基于可验证 AI 模型的 AMM。基于可验证的、公平的 AI 模型,Lyra finance 有机会成为 AI + Blockchain 的一次大规模落地实验,为 web3 用户首次带来公平的 matchmaking,通过 AI 对链上市场进行优化,提供更高的回报。 Giza:ZKML 平台,将模型直接部署在链上而不是进行链下验证,Nice try,but…由于算力以及 Cairo 不支持 CUDA-based 的证明生成的问题,Giza 只能支持一些小模型的部署。这也是最致命的问题,从长期来看,能对 web3 产生颠覆性影响的一定是大模型,而这种规模的模型必须有强大的硬件支持,比如 GPU。 Zama-ai:模型的同态加密。同态加密是一种加密形式,简单表示为:f [E (x)] = E [f (x)],其中 f 是运算操作,E 代表同态加密算法,x 是变量,比如:E (a) + E (b) = E (a + b)。允许对密文进行特定形式的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样。模型的隐私性一直是 AI + Blockchain 方向的热点和瓶颈,虽然 zk 对隐私友好,但 zk 不等于 privacy。zama 致力于确保模型执行的 privacy-preserving。 ML-as-a-service:这目前还只是一个思考方向,没有具体的落地应用,但目的是通过 ZKP 解决中心化 ML 服务提供者作恶以及用户信任的问题。Daniel Kang 在文章“Trustless Verification of Machine Learning”中有详细的描述(参考文中的一张图) 四、关于 AI + Blockchain 的总结 整体来说,在 web3 世界里的 AI 处于非常早期的阶段,但是毋庸置疑的是 onchain-AI 的成熟和普及一定会把 web3 的价值带到另一个高度。从技术上看,区块链能给 AI 提供独特的基础设施,AI 也是改变 web3 生产关系的重要工具,两者的结合可以碰撞出很多可能性,这也是值得兴奋和打开想象力的地方。 从 AI 上链的动力看,一方面,transparent + verifiable 的链上 AI 将去中心化和 trustless 的主体从人变为 AI 工具,极大提升了效率、安全性,并且为创造全新的产品形态提供了可能性;另一方面,区块链的基础设施不断迭代,web3 真正需要一个能让这些基础设施发挥最大价值的杀手级应用,ZKML 恰好符合这一点,比如 ZK-rollup 未来很可能作为 AI 进入 web3 的入口。 从可行性上看,现在的基础设施能一定程度上支持一定规模的模型,但还有很多不确定因素。通过 ZKP 做可验证模型目前看是 AI 上链的必经之路,可能也是确定性最强的将 AI 带入的 web3 应用的技术路径。但是长远来看现在的 proof system 需要再进行指数级的提升才能足够支持日渐庞大的模型。 从应用场景看,AI 几乎可以完美地参与到任何一个 web3 的方向,不管是 game、Defi、DID、tooling……虽然目前已有的项目非常匮乏而且缺乏长期价值,还没有从一种提升效率的工具转变为改变生产关系的应用。但值得兴奋的是有人迈出了第一步,我们可以看到 AI + blockchain 的最早期的样子和之后的可能性。 来源:金色财经lg...