全球数字财富领导者
CoNET
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
香港论坛
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
被美国列入出口禁令名单?浪潮信息一字跌停带崩ChatGPT板块
go
lg
...
似于ChatGPT的AIGC技术。因为
生成
式
AI
必须投入大量数据进行训练,为缩短训练就必须采用大量高性能 GPU。 对此,浪潮信息回应称,“公司正在进一步核实评估,暂无更多信息同步。至于供应链是否稳定,公司正在开会判断各方面情况。” 从业务涉及范围来看,浪潮信息主营业务为服务器等云计算基础设施产品的研发、生产、销售。从股价走势来看,浪潮信息2022年股价下滑39.87%,但随着ChatGPT概念的爆火,浪潮信息的股价“起飞”,2023年初至今股价已飙升72.61%,截至3月3日收盘,浪潮信息报收38.84元/股,总市值568.5亿元。 基本面上,据2022年三季报显示,浪潮信息2022年前三季度营业收入为527.67亿元,同比增长14.1%;归属于上市公司股东的净利润为15.46亿元,同比增长14.47%。
lg
...
金融界
2023-03-03
中国式ChatGPT“大跃进”
go
lg
...
浪接着一浪,现在几乎每周都会有几条关于
生成
式
AI
以及AI大模型的热点新闻。 在加密货币频频暴雷后,风险投资领域太需要一个刺激神经的技术了。 2月28日,百度官宣了将在3月16日召开发布会,公开自己的类ChatGPT产品“文心一言”。在此之前,Meta也宣布将开源一个用于科研的大模型系列LLaMA。 在微软高调把ChatGPT推到New Bing的台前后,硅谷巨头们就开始紧锣密鼓地推动大模型研究,谷歌仅用两个月就发布了类似ChatGPT的Bard。 在这方面,中国并不落后。2023年2月起,百度、阿里、腾讯、京东、字节等纷纷发声表示自己在大模型领域已经开展了深入研究,且获得了很多成果。一时间,追逐大模型成了国内AI行业的标准动作,“大练模型到炼大模型”的过度期似乎已经接近尾声,下一阶段大有“全民大模型,ChatGPT进万家”的架势。 不过,AI技术研发不是谁都能做的,需要真正的专家。硅谷巨头之所以能在大模型领域迅速反应,一方面因为他们在这条赛道上有多年的技术积累,更重要的是他们在AI研究方面有着大量的人才储备。 谷歌的人工智能研究团队一直处在全球领先地位,旗下还有与OpenAI齐名的实验室DeepMind;另一家科技巨头Meta则有被称为卷积神经网络之父的图灵奖得主Yann LeCun以首席AI科学家的身份坐镇。 微软手下的急先锋OpenAI,也是基于强大的科研团队才奠定的领先地位。科技情报分析机构AMiner和智谱研究发布的《ChatGPT团队背景研究报告》显示,OpenAI的ChatGPT研发团队中,27人为本科学历,25人为硕士学历,28人为博士研学历(注:5人信息缺失),占比分别为33%、30%、37%。 ChatGPT团队学历分布 而另一份来自猎聘大数据的国内AI人才市场调查则显示:近一年,预训练模型、对话机器人和AIGC三个ChatGPT相关领域中,国内企业明确要求本科以上学历的职位分别占71.33%、82.30%、92.53%;要求硕、博士学历的占比分别为16.49%、9.86%、18.22%。 对比ChatGPT团队,国内AI人才的平均水平差距较大,硕博比例明显不足。而在今天这种大家齐上大模型赛道的“加速”发展态势下,要在短时间里“大干快上”,势必要先比试比试谁的团队技术实力强,谁更能在自己的麾下聚拢一批大模型人才。 抢人大作战 技术大战开打之前,各家的大模型团队先得打赢一场关键的人才争夺战。 如果你是一个清华博士,有5-10年NLP(Natural Language Processing,自然语言处理)行业经验,那么你的资料只要出现在招聘平台上,不需要任何详细履历,就可以在注册完成后的48小时内,接到多家猎头公司的询问电话,以及数十条HR、猎头、业务经历甚至BOSS本人发来的站内信息。在这些信息中,不乏阿里、美团、小红书等大厂,还有诸多创业公司,以及研究机构。猎头们提供的NLP算法研究员岗位年薪也大多会在百万元上下。 根据猎聘大数据调查,过去五年,人工智能和互联网的招聘薪资均处于上涨态势,人工智能年均招聘薪资明显高出互联网。2022年,人工智能招聘平均年薪为33.15万元,比互联网高出4.27万元,即14.78%。 五年来人工智能与互联网招聘平均年薪对比 在ChatGPT爆火后,这样的情况越来越明显。据上述调查显示,与ChatGPT相关的岗位工资均超过平均水平,AIGC为39.08万,对话机器人为34.89万,预训练模型为33.93万。“ChatGPT一火起来,AI工程师的薪资水平也越来越高,你不开高价就抢不到人。”某AI领域投资人对虎嗅说。 从技术的角度看,大模型发端于NLP领域,自然语言处理岗位在人工智能领域一直都处于人才稀缺的状态,薪酬水平处于高位。科锐国际调研咨询业务负责人&高科技领域资深专家景晓平对虎嗅表示,“人工智能行业典型岗位按产业链划分,技术层和基础层薪酬水平处于高位,高于互联网其他领域薪酬水平,应用层和互联网常规岗位薪酬一致。” 事实上,近年来国内AI人才的硕博占比也在逐年提升,很多企业对AI领域的人才要求学历至少是硕士。薪酬结构则与企业的性质密切相关,国有企业、研究所的薪酬主要是固定薪酬、项目奖金和津贴,例如,国内第一梯队的AI实验室,清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)挂在官网上的博士后招聘待遇为年薪30万,享受清华大学教职工社会保险、住房公积金等待遇。提供公寓或每年4.2万的租房补贴,同时可以解决子女入园、入学。 IT大厂和AI创业公司的薪酬结构则多为,固定薪资+浮动奖金+股权期权激励。在猎聘、脉脉、BOSS直聘三个平台搜索ChatGPT,硕博学历职位的月薪普遍高于3万,最高达9万。“在薪酬方面IT大厂并不会占多少便宜,AI大模型的研发都是高举高打,创业公司给出的薪酬可能更有竞争力。”西湖心辰COO俞佳认为,没有资金支持很难在大模型的基础训练领域推动一家初创公司,对于这个领域来说,钱的问题可能“不是最大的问题”。 猎聘、脉脉、BOSS直聘,搜索ChatGPT的前排结果 此外,在诸多岗位信息中,工作地点集中在北京、上海、杭州和深圳,但其中一些职位也并不限制办公地。景晓平表示,目前国内AI人才北京占据第一位,上海、广东省分列二三位,近些年互联网发展极为活跃的浙江省,在人工智能发展上也丝毫不落风头,成都作为科技新秀城市,有优质相关生源的地域,也储备了不少人工智能人才。但从需求总量来看,国内AI人才还有很大缺口。 OpenAI的专家团队为何强 OpenAI官网挂出的参与过ChatGPT的项目团队共87人,该团队平均年龄为32岁,其中90后是主力军。 《ChatGPT团队背景研究报告》显示,ChatGPT研发团队绝大多数成员拥有名校学历,成员最集中的前5大高校是:斯坦福大学(14人)、加州大学伯克利分校(10人)、麻省理工学院(7人)、剑桥大学(5人)、哈佛大学(4人)和佐治亚理工学院(4人)。 ChatGPT 团队成员毕业前10名高校 此外,很多成员都有名企工作经历,包括:Facebook、Stripe、Uber、Quora、NVIDIA、Microsoft、Dropbox、DeepMind、Apple、Intel等公司,其中有10人来自谷歌,OpenAI的首席科学家Ilya Sutskever亦是从谷歌转会而来,Ilya Sutskever是AlphaGo的作者之一,师从人工智能学界泰斗Geoffrey Hinton。 ChatGPT团队成员流动示意图 1985年出生在苏联的Ilya Sutskever,如今已经是英国皇家学会院士。据说Ilya Sutskever退出谷歌,与Sam Altman、Elon Musk等人一起创立OpenAI时,年薪曾大幅缩水。但他参与创立OpenAI的初衷是“确保强大的人工智能造福全人类”的大义和情怀。 OpenAI初创之时是一家非营利研究机构,从这点上来看,无论是否带着情怀加入这家公司的研究人员,还是给“非营利”事业烧钱的投资人,多少都有一点对技术的“信仰”,这种驱动力,可能是钱买不来的。 不过OpenAI给这些科技精英们提供的薪酬待遇并不低。据纽约时报报道,2016年,OpenAI向Ilya Sutskever支付了超过190万美元。另一位行业大佬级的研究员Ian Goodfellow(对抗式生成网络的提出者)2016年从OpenAI得到的报酬则超过80万美元,而他在这一年中只工作了9个月,不过Ian Goodfellow在OpenAI没有待很长时间就离开了。 一直以来,硅谷的AI研究员都是高收入人群。在谷歌发布的官方招聘信息中,在美国工作的全职“高级软件工程师,大型语言模型,应用机器学习”(Staff Software Engineer, Large Language Models, Applied ML)岗位基本工资范围为年薪17.4万-27.6万美元(约120万-190万元人民币)+奖金+股权+福利。 这份工作的主要职责是:为谷歌大型语言模型的关键冲刺做出贡献,将尖端的 LLM(Large Language Mode,大型语言模型) 引入下一代谷歌产品和应用程序,以及外部用户。在建模技术方面进行协作,以支持全方位的 LLM 调整,从提示工程、指令调整、基于人类反馈的强化学习 (RLHF)、参数高效调整到微调。 微软研究院的研究员岗位“博士后研究员-机器学习和强化学习”(Post Doc Researcher-Machine Learning and Reinforcement Learning)年薪则在9.4万-18.2万美元(约64万-125万元人民币)。工作职责是“与其他研究人员合作制定自己的研究议程,推动有效的基础、基础和应用研究计划。” ChatGPT团队中另一个有意思的点是团队中有9位华人成员,其中5人本科毕业于国内高校,美国学界对人才的虹吸效应也正是硅谷巨头以及“OpenAI”们强大人才竞争力的基础。 “中国的AI人才是从14亿人里挑,美国是从80亿人里挑,全世界优秀的人很多都到美国去了。”图灵联合创始人、原智源研究院副院长刘江表示,要承认差距确实存在,不过他也表示,“在这方面,我们也不用气馁。中国也有自己的优势,比如市场化、产品化的能力,近年来我们不比美国同行差了。” 国内大厂的实力如何? 除了人才问题,国内大模型研究落后美国另一个原因是在
生成
式
AI
和大模型研究方面起步略晚,而起步晚的原因,则还是与“钱”脱不开关系。 从技术角度看,生成式技术在Stable Diffusion和ChatGPT等网红产品出现之前,技术实现的效果并不理想,且需要消耗大量算力进行研究。所以大厂、资本很难斥以重资,投入到这种看上去不太赚钱,还要烧钱的业务。 中国的AI产业更注重应用场景,而非基础理论和技术创新。各家大厂在NLP的理解方面有很多成熟业务,比如听写、翻译,在视觉识别和AI大数据处理方面也有很多应用场景。所以这部分业务自然是AI研发的主力,一方面他们赚钱,另一方面在这些领域的技术积累,使研究人员能够“在规定跑道上赛跑”,而不是在未知领域探路。 这一点不只是限制了国内公司,更是很多全球巨头的创新桎梏。正如诺基亚做不出iPhone一样,巨头都不喜欢“破坏式创新”,谷歌发布的Bard只因一个小失误就牵动了母公司Alphabet的万亿市值,这也正是谷歌一直声称不愿发布LaMDA大模型的理由,害怕会因AI的失误影响自己的商誉。而OpenAI显然不太在乎ChatGPT在公测中会出什么问题,毕竟他发布ChatGPT时只是一家估值200亿美元的独角兽。 不过,在这波大模型的追赶赛中,国内大厂的团队也可以说是实力颇强。 百度在大模型方面走的最早,百度自2019年开始研发预训练模型,先后发布了知识增强文心(ERNIE)系列模型。文心大模型研发的带头人,百度首席技术官、深度学习技术及应用国家工程研究中心主任王海峰博士,是自然语言处理领域权威国际学术组织ACL(Association for Computational Linguistics)的首位华人主席、ACL亚太分会创始主席、ACL Fellow,还是IEEE Fellow、CAAI Fellow及国际欧亚科学院院士。他还兼任中国电子学会、中国中文信息学会、中国工程师联合体副理事长等。目前,王海峰在国内外期刊会议上发表的学术论文有200余篇,获得已授权专利170余项。 虽然没有像百度一样公布类ChatGPT产品的发布时间表,但腾讯、阿里和华为分别提出的“混元”、“通义”和“盘古”三个大模型,均已研发了很长时间。 据机器学习和自然语言处理著名学者Marek Rei教授在2022年4月发布的统计(2023年的统计尚未发布)显示,2012-2021年中,在ML(Machine Learning,机器学习)和NLP顶级期刊和会议发表论文数量最多的机构是谷歌,微软紧随其后。发文数量最多的中国机构是清华大学,第二是位列第16的腾讯,腾讯也是前32名中唯一的中国互联网厂商。不过,在2021年单年的统计中,阿里和华为也登上此榜,腾讯仍排在较靠前的位置。 Marek Rei发布的2021年ML、NLP顶会、期刊发文量统计 目前,腾讯官方并没有公布“混元”大模型研发团队的具体信息。不过,腾讯旗下AI研发团队“腾讯AI Lab”的专家构成,也显示出了腾讯在AI领域的一部分实力。腾讯AI Lab由100余位AI科学家和超过300名应用工程师组成,带头人张正友博士是腾讯首席科学家、腾讯 AI Lab 及 Robotics X 实验室主任,腾讯首位17级研究员、杰出科学家。他在美国斯坦福大学(Stanford University)发布的2022 年度“全球前2%顶尖科学家榜单”(World's Top 2% Scientists 2022)中,排名全球“终身科学影响力排行榜”第1002名,中国排名 Top 10。 阿里在LLM领域的研究主要由阿里巴巴达摩院负责,阿里巴巴集团资深副总裁,阿里云智能CTO、达摩院副院长周靖人主导,他是IEEE Fellow,多次担任VLDB,SIGMOD,ICDE等国际顶级会议程序委员会主编、主席,在顶尖国际期刊和会议上发表论文超百篇,并拥有几十项技术专利。 华为也未对“类ChatGPT产品”公开表态,但在大模型方面华为亦有“盘古”大模型正在研究。该项目由华为云人工智能领域首席科学家田奇博士领导,他是计算机视觉、多媒体信息检索专家,IEEE Fellow,国际欧亚科学院院士,教育部长江讲座教授,国家自然科学基金海外杰青,中国科学院海外评审专家,在国内多所高校任讲席教授及客座教授。 在自己组建团队投入研发的同时,百度、阿里、腾讯、华为等IT大厂,也与中科院计算所自然语言处理研究组、哈尔滨工业大学自然语言处理研究所、中国人民大学高瓴人工智能学院等高校研究有很多的技术合作。 “集中力量办大事”的科研机构 数据闭环是大模型研发的关键,用户越多,积累时间越长,就意味着可以用于迭代升级的数据和反馈也就越多。 在这方面OpenAI已经利用前两代的开源GPT模型和GPT-3积累了大量数据。ChatGPT虽然才推出了3个月,但用户量和访问量增长速度飞快,这些都为OpenAI在大模型研发方面积累了巨大的先发优势。 “AI大模型如果落后了,就会面临卡脖子的风险。”很多AI专家对此都有担心,由此国内也诞生了一些应对此种局面的非营利性AI科研机构。这些机构多数有高校研究实验室背景加持,以及地方政策支持,人才聚拢能力非常强劲。 北京智源人工智能研究院(以下简称“智源研究院”)是科技部和北京市政府共同支持,联合北京人工智能领域优势单位共建的非营利性创新性研发机构。智源研究院理事长张宏江,是美国国家工程院外籍院士,ACM Fellow和IEEE Fellow,同时也是微软亚洲研究院的创始人之一。 2021年,智源研究院发布了1.7万亿参数的超大模型“悟道”的1.0和2.0版本,这项工作由100余位科学家共同打造。其中包括清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)的孙茂松教授,清华大学知识工程研究室(KEG)的唐杰教授,清华大学交互式人工智能课题组(CoAI)的黄民烈教授。 目前“悟道”大模型已经与OPPO、好未来、淘宝、搜狗、美团等开展了落地合作。在与美团的合作中,大模型给搜索广告带来了2.7%的收入增长。 在南方的科技重镇也有一家相似的研究机构,粤港澳大湾区数字经济研究院(以下简称IDEA研究院),IDEA研究院是由深圳市政府大力支持的AI研究机构。与智源研究院有一个颇有趣的相似之处,IDEA研究院的创始人沈向洋博士同样出身微软亚洲研究院。沈向洋博士是美国国家工程院外籍院士和英国皇家工程院外籍院士,他参与创建了微软亚洲研究院,担任院长兼首席科学家,并曾担任微软公司全球执行副总裁,主管微软全球研究院和人工智能产品线,并负责推动公司中长期总体技术战略及前瞻性研究与开发工作。 IDEA研究院NLP研究中心负责人张家兴博士也来自微软亚洲研究院,他的团队推出的开源模型“太乙”,据称在中文文生图领域可以达到接近Stable Diffusion(一款开源文生图AI模型)的水平。 目前IDEA研究院正在持续迭代开发的预训练模型体系“封神榜”,已经开源了6个系列共10个模型,包含4种模型结构,模型参数最大为35亿。其中包括:以Encoder结构为主的双向语言系列模型的二郎神系列;面向医疗领域,拥有35亿参数的余元系列;与追一科技联合开发的新结构大模型周文王系列;以Decoder结构为主的单向语言模型闻仲系列;以Transformer结构为主的编解码语言模型,主要解决通用任务的大模型燃灯系列;以及主要面向各种纠错任务的比干系列。 2月20日晚,复旦大学自然语言处理实验室对媒体宣传邱锡鹏教授团队发布了“国内第一个对话式大型语言模型MOSS”,并在公开平台(https://moss.fastnlp.top/),邀请公众参与内测。然而就在外界都等着看MOSS表现如何惊艳之时。MOSS的内测网站却挂出了一则道歉公告。 目前MOSS的测试网站已经挂出了停止服务的公告。一位AI大模型专家对虎嗅表示,“邱锡鹏的实验室学术研究的氛围很浓。虽然这次的MOSS很少有人得到体验机会,但是从后边的公告来看,有可能是在工程优化,并发处理等方面的准备还没有那么充分。” 在近期举行的2023年世界人工智能开发者先锋大会上,邱锡鹏教授公开表示,如果优化顺利,MOSS计划在2023年3月底开源。 虽然,没能成功抢发“国产ChatGPT”,但AI业内人士对邱锡鹏教授团队仍然给出了肯定的评价,“邱锡鹏教授的团队比较偏重学术,这和早期的OpenAI在科研心态上是有共性的,非营利性的AI研究机构,没有那么多功利的考虑。” 创业公司都有“大佬”背书 AI技术属于计算机科学,虽然计算机技术已发展多年,但AI仍属于前沿科技,对LLM以及其他通用大模型的研究更是兴起不久,仍然需要依靠应用数据,持续迭代升级,不管MOSS是不是因为工程经验绊了跟头,要在AI、大模型这些领域实现突破,能推广到市场中,接地气的技术和产品才是王道。事实上,目前国内AI行业活跃的实验室大多已开始尝试商业化,在市场的磨砺中探索大模型未来的出路。 深言科技 深言科技源自清华大学计算机系自然语言处理与社会人文计算实验室(THUNLP)。THUNLP由清华大学人工智能研究院常务副院长孙茂松,以及刘洋、刘知远,三位教授带头。实验室在2017年推出的中文诗歌自动生成系统「九歌」则是最有影响的诗歌生成系统之一,「九歌」已经为用户创作了超过3000万首诗词。 孙茂松教授领衔研发的CPM模型是智源研究院的大模型「悟道·文源」的前身,也是国内最成熟的中文生成式大模型之一。深言科技的团队也是由CPM模型的部分研发团队成员所组成的,目前该公司产品包括可以根据意思搜索词语的“WantWords反向词典”,以及根据意思查询句子的“WantQuotes据意查句”。 智谱AI 智谱AI的前身是清华大学知识工程研究室(KEG),KEG专注研究网络环境下的知识工程,在知识图谱、图神经网络和认知智能领域已发表一系列国际领先的研究成果。2006年,智谱AI就启动了科技信息分析引擎ArnetMiner(以下简称AMiner)的相关研究,先后获得了国际顶级会议SIGKDD的十年最佳论文(Test-of-Time Award)、国家科学进步奖二等奖、北京市发明专利奖一等奖。 2022年8月,由KEG与智谱AI共同研发的千亿级模型参数的大规模中英文预训练语言模型GLM-130B正式发布,其在多个公开评测榜单上超过GPT-3 v1。此外,智谱AI还打造了认知大模型平台(BigModel.ai),形成AIGC产品矩阵,提供智能API服务。 聆心智能 2月17日,聆心智能宣布完成由无限基金SEE Fund领投的Pre-A轮融资。聆心智能的底层技术是超拟人大规模语言模型,基于大模型可控、可配置、可信的核心技术优势,聆心智能推出“AI乌托邦”,该系统允许用户快速定制 AI 角色。 聆心智能由清华大学交互式人工智能课题组(CoAI)黄民烈教授支持。CoAI是清华大学朱小燕教授及黄民烈教授领导的实验室。2020年,就已经开源了1200万对话数据和中文对话预训练模型CDial-GPT。黄民烈教授也曾参与了智源研究院的“悟道”大模型研发。 西湖心辰 西湖心辰背靠西湖大学深度学习实验室,创始人是西湖大学助理教授、博士生导师蓝振忠,主要研究大规模预训练模型的训练与应用。蓝振忠曾在谷歌担任研究科学家,也是轻量化大模型ALBERT的第一作者。 西湖大学在人工智能领域的研发实力很强,除了蓝振忠博士的深度学习实验室,西湖大学NLP实验室,在该领域的研究也非常领先。学术带头人张岳博士在Marek Rei教授的顶会、期刊发文量统计中,于2012-2021年期间排名全球第四。 “目前国内LLM领域的创业公司相对IT大厂来说主要有两个优势,技术和数据。”西湖心辰COO俞佳对虎嗅表示,国内大模型创业公司在技术方面普遍已有多年研究经验,构筑了一定的技术壁垒,这是很难短期超越的。同时,由于已经推出了相关产品,“数据飞轮”已经转起来了,这些数据的质量相比互联网数据质量要高很多,能够对产品迭代起到很大支撑作用。 对于国内大模型创业公司未来的发展趋势,俞佳认为可能性很多,“有些公司可能会走出自己的道路,也有的公司可能会像OpenAI一样与IT大厂开展深度合作,甚至像DeepMind直接并入其中。” 来源:金色财经
lg
...
金色财经
2023-03-03
不论谁赢了ChatGPT大战 英伟达都是最后的赢家
go
lg
...
ge Language Model)将
生成
式
AI
引入了公众的视线——几乎所有软件将被 AI 重塑,黄仁勋更是将其比作「AI 的 iPhone 时刻」。 就此,时代的风口由元宇宙和 web3 突然切换到
生成
式
AI
,FAAMG 等硅谷巨头们匆忙备战随时「开打」。而英伟达,稳稳地成为这场时代之战的「最大军火商」。 作为当下「AI 超级周期的跳动心脏」,英伟达的 GPU(图形处理芯片)是训练和操作机器学习模型的最佳选择,因而被视为「2023 年云资本支出重心转向人工智能的最大受益者」。 其实,这不是英伟达第一次乘上时代的风车——加速计算、深度学习、挖矿、元宇宙,英伟达屡次踩中时代的风口。在它成立的短短 30 年里,芯片江湖已然换了人间,当年与 90 家显卡商厮杀落败的初创公司,早已成为市值最高的芯片霸主。 英伟达屡次「躺赢」,离不开其掌舵者黄仁勋的战略眼光——总是能精准预判下一个技术变革,提前下手。在近日的财报电话会上,黄仁勋透露了:这一次,他提前看到的未来及其相应的战略布局。面对大语言模型加持的
生成
式
AI
,「核弹厂」的野心远非提供「军火」。 ChatGPT 大战背后的「战争之王」 去年 11 月底以来,OpenAI 让人们见识到了「通用智能」的厉害,依托大语言模型的 ChatGPT 所展现的思维链条(Chain of Thought)和自发涌现的各种能力(Emergence)令人惊艳——尽管 ChatGPT 本身没有知识和智慧,但是它做到了「让你以为它有知识甚至智慧」的程度。 不久前,在加州大学伯克利分校哈斯商学院的炉边谈话上,黄仁勋兴奋地评价 ChatGPT 将开启科技行业的新纪元,也是人工智能和计算行业有史以来最美妙的事情。 他说:「上一次看到一项如此多才多艺、可以解决问题并经常以多种方式带给人们惊喜的科技是什么时候?它可以写一首诗,可以填写电子表格,可以编写 SQL 查询并执行,可以写 Python 代码……对于很多一直致力于此的人来说,我们一直在等待这一刻,这是人工智能的 iPhone 时刻。我现在可以将它用作 API 并连接到电子表格、PPT、各个应用程序,它有让一切变得更好的潜力」。 这是「AI 将重塑所有软件」的际遇,而要让
生成
式
AI
能够像 ChatGPT 这样展现五花八门的通识才能,必须依托像 GPT3.5 这样的底层大语言模型。人们将其比作移动互联网时代里安卓或 iOS。因此,大语言模型也就成为大厂和创业公司的必争之地。 无论是「造」出这样一个大模型,还是运行这样一个大模型,都需要极大的算力,需要成千上万个 GPU。据报道,OpenAI 用了 10000 个英伟达的 GPU 来训练 ChatGPT。花旗集团估计,ChatGPT 的使用可能会在 12 个月内为英伟达带来 30 亿至 110 亿美元的销售额。 此前,《中国电子报》采访业内人士表示,「大模型技术涉及 AI 开发、推理、训练的方方面面,所谓模型的『大』主要是参数量大、计算量大,需要更大体量的数据和更高的算力支撑。对于 GPU 厂商来说,大模型是值得期待的算力红利,尤其是通用性极强的英伟达」。 全球来看,大算力芯片领域主要有两个玩家,英伟达和 AMD,从市占率来说,英伟达远超 AMD。根据 John Peddie Research 的数据,英伟达占据了 GPU 市场约 86% 的份额。 这也就不难理解,在炙手可热的
生成
式
AI
浪潮下,英伟达被视为最大的潜在赢家。从财报上看,这波
生成
式
AI
对于英伟达的需求主要反映在数据中心业务。事实上,2023 整个财年的四个季度,数据中心已经替代了英伟达起家的支柱业务——游戏,成为第一大业务。 2022 财年第 4 季度——2023 财年第 4 季度,英伟达各个板块的营收 | 截图来源:Nvidia 2023 财年,数据中心总收入增长了 41%,达到创纪录的 150.1 亿美元。仅就第四季度而言,数据中心收入为 36.2 亿美元,贡献了英伟达全公司收入的 60% 左右。 数据中心增长的基本盘来自于新一代旗舰产品 H100 的出货量持续走高、云的渗透率持续增长、以及超大规模客户扩大了 AI 布局。 就 H100 而言,其收入在第二季度就已经远远高于 A100,后者的营收份额连续下降。据悉,H100 在训练方面比 A100 快 9 倍,在基于 Transformer 的大型语言模型推理方面比 A100 快 30 倍。 同时,英伟达正在为越来越多的、快速增长的云服务商(Cloud Service Providers,简称 CSP)提供服务,包括甲骨文和一些专注于 GPU 的云服务提供商(GPU specialized CSPs)。在过去的 4 个季度中,CSP 客户贡献了数据中心收入的 40% 左右。 下一步:AI 即服务 财报电话会上,老黄透露了英伟达的新动向——AI 企业级服务上云。尽管更多信息会在十几天后的 GTC 大会上才宣布,但英伟达正与领先的云服务商合作提供 AI 即服务(AI-as-a-service),让企业可以访问英伟达的 AI 平台。据官方消息,客户将能够把 NVIDIA AI 的每一层(包括 AI 超级计算机、加速库软件或预训练的
生成
式
AI
模型等)作为云服务来使用。 老黄阐述道,「技术突破的积累使 AI 到了一个拐点。
生成
式
AI
的多功能性和能力引发了世界各地企业开发和部署 AI 战略的紧迫感。然而,AI 超级计算机基础设施、模型算法、数据处理和训练技术仍然是大多数人无法克服的障碍。」 基于这样的行业痛点,英伟达商业模式的下一个层次是:帮助每个企业客户都能使用 AI。 客户使用自己的浏览器,就可以通过 NVIDIA DGX Cloud 来使用 NVIDIA DGX AI 超级计算机,该服务已经在 Oracle Cloud Infrastructure 上可用,预计不久后也将在 Microsoft Azure、Google Cloud 和其他平台上线。在 AI 平台软件层,客户将能够访问 NVIDIA AI Enterprise,以训练和部署大型语言模型或其他 AI 工作负载。而在 AI 模型即服务层,英伟达将向希望为其业务建立专有
生成
式
AI
模型和服务的企业客户提供 NeMo 和 BioNeMo 可定制 AI 模型。 就其市场前景,黄仁勋认为,ChatGPT 让人们意识到计算机编程的民主化,几乎任何人都可以用人类语言向机器解释要执行的特定任务。因此,全世界 AI 基础设施的数量将会增长,「你会看到这些 AI 工厂无处不在」。人工智能的生产将会像制造业一样,在未来,几乎每个公司都会以智能的形式生产软件产品。数据进来了,只做一件事,利用这些数据产生一个新的更新模型。 他进一步解释了 AI 工厂,「当原材料进入时,建筑或基础设施就会启动,然后一些改进的东西就会出现,这是非常有价值的,这就是所谓的工厂。所以我希望在世界各地看到 AI 的工厂。其中一些将托管在云中。其中一些将是本地的。会有一些很大,有些会非常大,然后会有一些更小。所以我完全期待这会发生。」 事实上,老黄关于 AI 工厂愿景正在发生,上个月,他在公开演讲中声称,自从 ChatGPT 出现以来,可能已经有大约 500 家新创业公司开发出令人愉快的、有用的 AI 应用程序。 基于这一前景,英伟达对数据中心的未来充满信心。CFO Cress 表示,通过新的产品周期、
生成
式
AI
以及人工智能在各个行业的持续采用,数据中心部门将持续实现增长。她说:「除了与每个主要的超大规模云服务商合作外,我们还与许多消费互联网公司、企业和初创企业合作。这一机会意义重大,推动数据中心的强劲增长,并将在今年加速增长。」 汽车向上,游戏向下 除了数据中心,英伟达其他的业务板块——游戏、汽车、专业视觉等,本季度的表现则有好有坏。 其中,车用业务表现亮眼。财年总收入增长 60%,达到创纪录的 9.03 亿美元。第四季度收入创下 2.94 亿美元的纪录,较去年同期增长 135%,较上一季度增长 17%。 无论是环比还是同比,车用业务均持续增长。根据英伟达,这些增长反映了自动驾驶解决方案的销售增长,面向电动汽车制造商的计算解决方案以及 AI 座舱解决方案的销售强劲。电动汽车和传统 OEM 客户的新项目助推了这一增长。 值得注意的是,在今年 1 月初举行的 CES 大会上,英伟达宣布与富士康建立战略合作伙伴关系,共同开发基于 NVIDIA DRIVE Orin 和 DRIVE Hyperion 的自动驾驶汽车平台。 相比之下,游戏业务依然深处泥潭之中。 过去几个季度,RTX 4080 销售疲软、视频游戏行业下滑、加密货币市场疲软、以及去库存压力等因素,让英伟达的游戏业务持续低迷,尤其第三季度,游戏业务营收同比暴跌 51%。但就像 CFO Cress 所言,「最低点可能已经过去,而且事情可以改善前进。」 第四季度,英伟达游戏营收为 18.3 亿美元,同比下降 46%,环比增长 16%,整个财年收入下降 27%。该季度和财年的同比下降反映了销售减少,背后是全球宏观经济低迷和中国放开疫情管控对游戏需求的影响。 但环比三季度,英伟达的游戏业务还是取得了一定增长。这是由于受到基于 Ada Lovelace 架构的新 GeForce RTX GPU 的推出推动。黄仁勋也肯定了这一看法,他说:「游戏业正在从新冠肺炎疫情后的低迷中复苏,而且玩家们热烈欢迎使用 AI 神经渲染的 Ada 架构 GPU。」 近日,游戏行业一个复苏的好迹象是:动视暴雪(Activision Blizzard)在第四季度实现了营收正增长,超出了预期。但仍要警惕——动视暴雪在 PC 和主机上销售游戏,而只有 PC 销售与英伟达相关,主机制造商使用 AMD 显卡。 此外,在财报发布的前一天,英伟达宣布与微软签订了一项为期 10 年的协议,将 Xbox PC 游戏阵容引入 GeForce NOW,包括《我的世界(Minecraft)》、《光环(Halo)》和《微软模拟飞行(Microsoft Flight Simulator)》。待微软完成收购动视之后,GeForce NOW 将新增《使命召唤(Call of Duty)》和《守望先锋(Overwatch)》等游戏。 除了游戏业务之外,专业视觉和 OEM 这两个部门的业务也较上一年有大幅下降。从中可以看出:半导体市场正在经历罕见的下行周期。 专业视觉业务第四季度收入为 2.26 亿美元,较去年同期下降 65%,较上一季度增长 13%。财年总收入下降 27% 至 15.4 亿美元。该季度和财年同比下降反映了向合作伙伴销售较少以帮助减少渠道库存。环比增长是由台式工作站 GPU 推动的。 OEM 和其他收入同比下降 56%,环比增长 15%。财年收入下降 61%。该季度和财年同比下降是由笔记本 OEM 和加密货币挖掘处理器(CMP)推动的。在财年 2023 中,CMP 收入微不足道,而在财年 2022 中为 5.5 亿美元。 风口上的赢家,为什么又是英伟达 英伟达 30 年的发展史可以分为两段。从 1993 年到 2006 年,英伟达的目标是在竞争激烈的图形卡市场中存活下来,并创造了 GPU 这一革命性的技术;从 2006 年到 2023 年的转型,则主要是如何利用 CUDA 这一平台,将 GPU 应用于机器学习、深度学习、云计算等领域。 后者让英伟达走上人工智能之旅,今天市值已经超过老牌霸主英特尔和 AMD,也是在今天
生成
式
AI
热潮下,英伟达再次站上风口的前提。 在 2019 年的一次主题演讲中,黄仁勋分享了英伟达一次次重溯行业的缘起——找到了真正重要的问题并坚持。他说:「这使我们能够一次又一次地发明、重塑我们的公司、重溯我们的行业。我们发明了 GPU。我们发明了编程着色。是我们让电子游戏变得如此美丽。我们发明了 CUDA,它将 GPU 变成了虚拟现实的模拟器。」 回到英伟达的起点。当时 Windows 3.1 刚刚问世,个人电脑革命才刚刚要开始。英伟达想要能找到一种方法让 3D 图形消费化、民主化,让大量的人能够接触到这项技术,从而创造一个当时不存在的全新行业——电子游戏。他们认为,如果做成,就有可能成为世界上最重要的技术公司之一。 原因在于:三维图形主要表现为对现实的模拟,对世界的模拟相当复杂,如果知道如何创建难辨真假的虚拟现实,在所做的一切中模拟物理定律,并将人工智能引入其中,这一定是世界上最大的计算挑战之一。它沿途衍生的技术,可以解决惊人的问题。 最有代表性的案例,就是通过 CUDA 等方案为计算、人工智能等带来了革新性影响,也让它在这一波
生成
式
AI
浪潮中处于最佳生态位。 尽管 GPU 作为计算设备的发现经常被认为有助于引领围绕深度学习的「寒武纪大爆炸」,但 GPU 并不是单独工作的。英伟达内外的专家都强调,如果英伟达在 2006 年没有将 CUDA 计算平台添加到组合中,深度学习革命就不会发生。 CUDA(Compute Unified Device Architecture)计算平台是英伟达于 2006 年推出的软件和中间件堆栈,其通用的并行计算架构能够使得 GPU 解决复杂的计算问题。通过 CUDA,研究人员可以编程和访问 GPU 实现的计算能力和极致并行性。 而在英伟达发布 CUDA 之前,对 GPU 进行编程是一个漫长而艰巨的编码过程,需要编写大量的低级机器代码。使用免费的 CUDA,研究人员可以在在英伟达的硬件上更快、更便宜地开发他们的深度学习模型。 CUDA 的发明起源于可程式化 GPU 的想法。英伟达认为,为了创造一个美好的世界,第一件要做的事情就是先模拟它,而这些物理定律的模拟是个超级电脑负责的问题,是科学运算的问题,因此,关键在于:怎么把一个超级电脑才能解决的问题缩小、并放进一台正常电脑的大小,让你能先模拟它,然后再产生画面。这让英伟达走向了可程式化 GPU,这是个无比巨大的赌注。 彼时,英伟达花了三四年时间研发 CUDA,最后却发现所有产品的成本都不得不上升近一倍,而在当时也并不能给客户带来价值,客户显然不愿意买单。 若要让市场接受,英伟达只能提高成本,但不提高售价。黄仁勋认为,这是计算架构的事情,必须要让每一台电脑都能跑才能让开发者对这种架构有兴趣。因此,他继续坚持,并最终打造出了 CUDA。但在那段时间,英伟达的利润「摧毁性」地下降,股票掉到了 1.5 美元,并持续低迷了大约 5 年,直到橡树岭国家实验室选择了英伟达的 GPU 来建造公用超级电脑。 接着,全世界的研究人员开始采用 CUDA 这项技术,一项接着一项的应用,一个接着一个的科学领域,从分子动力学、计算物理学、天体物理学、粒子物理学、高能物理学……这些不同的科学领域开始采用 CUDA。两年前,诺贝尔物理学奖和化学奖得主,也都是因为有 CUDA 的帮助才得以完成自己的研究。 当然,CUDA 也为英伟达的游戏提供了动力,因为虚拟世界里和现实世界的流体力学是一样的,像是粒子物理学的爆炸、建筑物的崩塌效果,和英伟达在科学运算中观察到的是一样的,都是基于同样的物理法则。 然而,CUDA 发布后的前六年里,英伟达并未「全力投入」AI,直到 AlexNet 神经网络的出现。 在即将到来的 GTC 大会上,黄仁勋邀请了 OpenAI 联创兼首席科学家 Ilya Sutskever,而 Sutskever 见证了英伟达这段在人工智能领域崛起的故事。 Sutskever 与 Alex Krizhevsky 及其博士生导师 Geoffrey Hinton 一起创建了 AlexNet,这是计算机视觉领域开创性的神经网络,在 2012 年 10 月赢得了 ImageNet 竞赛。获奖论文表明该模型实现了前所未有的图像识别精度,直接导致了此后十年里人工智能的主要成功故事——从 Google Photos、Google Translate 和 Uber 到 Alexa 和 AlphaFold 的一切。 根据 Hinton 的说法,如果没有英伟达,AlexNet 就不会出现。得益于数千个计算核心支持的并行处理能力,英伟达的 GPU 被证明是运行深度学习算法的完美选择。Hinton 甚至在一次演讲上告诉在场的近千名研究人员都应该购买 GPU,因为 GPU 将成为机器学习的未来。 在 2016 年接受福布斯采访时,黄仁勋说自己一直都知道英伟达图形芯片的潜力不止于为最新的视频游戏提供动力,但他没想到会转向深度学习。 事实上,英伟达的深度神经网络 GPU 的成功是「一个奇怪的幸运巧合」,一位名叫 Sara Hooker 的作者在 2020 年发表的文章「硬件彩票」探讨了各种硬件工具成功和失败的原因。 她说,英伟达的成功就像「中了彩票」,这在很大程度上取决于「硬件方面的进展与建模方面的进展之间的正确对齐时刻」。这种变化几乎是瞬间发生的。「一夜之间,需要 13000 个 CPU 的工作两个 GPU 就解决了」她说。「这就是它的戏剧性。」 然而,英伟达并不同意这种说法,并表示,从 2000 年代中期开始英伟达就意识到 GPU 加速神经网络的潜力,即使他们不知道人工智能将成为最重要的市场。 在 AlexNet 诞生的几年后,英伟达的客户开始购买大量 GPU 用于深度学习,当时,Rob Fergus(现任 DeepMind 研究科学家)甚至告诉英伟达应用深度学习研究副总裁 Bryan Catanzaro,「有多少机器学习研究人员花时间为 GPU 编写内核,这太疯狂了——你真的应该研究一下」。 黄仁勋逐渐意识到 AI 是这家公司的未来,英伟达随即将把一切赌注押在 AI 身上。 于是,在 2014 年的 GTC 主题演讲中,人工智能成为焦点,黄仁勋表示,机器学习是「当今高性能计算领域最激动人心的应用之一」。「其中一个已经取得令人兴奋的突破、巨大的突破、神奇的突破的领域是一个叫做深度神经网络的领域。」黄仁勋在会上说道。 此后,英伟达加快布局 AI 技术,再也不只是一家 GPU 计算公司,逐渐建立了一个强大的生态系统,包括芯片、相关硬件以及一整套针对其芯片和系统进行优化的软件和开发系统。这些最好的硬件和软件组合平台,可以最有效地生成 AI。 可以说,GPU + CUDA 改变了 AI 的游戏规则。中信证券分析师许英博在一档播客节目中评价道:英伟达一直在做一件非常聪明的事情,就是软硬一体。在 GPU 硬件半导体的基础上,它衍生出来了基于通用计算要用的 CUDA。这促成了英伟达拿到了软件和硬件的双重规模效应。 在硬件端,因为它是图形和计算的统一架构,它的通用性保证了它有规模性,而规模性摊薄了它的研发成本,所以硬件上本身通过规模性可以拿到一个比较优势的研发成本。 在软件端,因为它有庞大的开发者的生态,而这些宝贵的软件开发人员,即便是这些软件开发人员换了一个公司,但他可能还是在继续用 CUDA 的软件。 主要参考文献: 1)《ChatGPT 火了,英伟达笑了》——中国电子报 2)Nvidia: The GPU Company (1993-2006) 3)Nvidia: The Machine Learning Company (2006-2022) 4)NVIDIA CEO Jensen Huang - AI Keynote Session at MSOE 5)Jensen Huang Q&A: Why Moore』s Law is dead, but the metaverse will still happen 6)How Nvidia dominated AI—and plans to keep it that way as generative AI explodes 7)中信证券许英博:从英伟达看国产 GPU 的挑战与前景 - 小宇宙 - 创业内幕 来源:金色财经
lg
...
金色财经
2023-03-02
高端局来了!元宇宙第一股Roblox融合AI,打开游戏新世界大门
go
lg
...
踩了刹车。 当前,Roblox正在推出
生成
式
AI
,尝试将AI技术与元宇宙结合,以更好地创造未来,为元宇宙注入新的灵魂。那么,Roblox是如何发展成元宇宙领域的标杆企业的?当元宇宙业务成为海内外互联网巨头急于甩掉的包袱时,被称为“元宇宙第一股”的Roblox又做出了怎样的选择? Roblox经历了什么? Roblox于2004年由连续创业者Baszuki和Erik Cassel联手创立,作为一个3D社交平台,用户可以创作、开发游戏,并且参与其中。 在这里,用户既是游戏的开发者,又是游戏的参与者。Baszuki希望Roblox可以鼓励创造力,并且成为一个可供用户玩耍、探索、社交、创造和学习的平台。 在Roblox诞生不久,Baszucki和Cassel就发布了基于Lua编程语言的适用性非常广泛的创作游戏的工具集Roblox Studio,并且推出了创作者交易计划,为平台积累了数百万的创作者和上千万的游戏作品。 而2021年,Roblox将元宇宙写入了招股书,在纽交所成功上市,其首日市值飙升至400亿美元,掀起了“元宇宙”热潮。其提到的“身份、朋友、沉浸感、低延迟、多元化、随地、经济系统、安全”元宇宙八大要素至今都是为人乐道的主流观点。 我们也在2021年10月发布的《详解元宇宙第一股Roblox,我们能得到什么启示?》一文,详细的拆解了当时Roblox给我们带来的启示,并展望了Roblox的未来。 元宇宙的开端从此而起,时间飞逝至今的一年半中,Roblox的发展也随着行业而沉浮。 2022年11月,Roblox公布了第三季度财报,财报显示该公司营收同比增长2%,预售服务收入同比增长10%,而该公司净亏损2.978亿美元,比分析师预计的亏损金额高了42.9%。一时间股价狂跌,市值跌去了76%,从巅峰800亿美元一跃而下,堪称惨烈至极。 这家曾被资本追捧的独角兽公司被质疑盈利能力,忧虑缠身,元宇宙只是一个噱头的论断让资本对其半掩起了大门。 然而让大家没有想到的是,Roblox在各个维度突围,最终在短短的三个月里逆风翻盘。 首先,Roblox积极的推动开发者人数的提升,让开发者社区涌入更多新生力量,开发者是元宇宙的基础,通过全新的游戏吸纳更多的用户,从而扩大了平台内的交易量。 除此之外,Roblox开始推出类似NFT的物品,试图缓慢而有节奏的将Web3功能引入产品之中。 作为另一个火爆全球的概念,Web3不仅自带流量,还为Roblox提供了更多的可能。与此同时,Roblox还在积极增加广告收入,并且与诸多品牌联名,在提高品牌曝光量的同时增加收入。 而随着人工智能如同燎原之火席卷全球,Roblox再一次走在了互联网企业创新的前沿,将
生成
式
AI
技术与Roblox Studio集成,让创作者可以通过简单的陈述来设计游戏,简化想象成为现实的路径,让创作变得更加直观和自然。 同时,Roblox还为
生成
式
AI
的发展提供了一个生态系统,通过使第三方AI创作服务直接插入Roblox,让AI模型充分的使用,让人工智能的创造力在Roblox中被无限地放大。 作为元宇宙的先行者,Roblox让我们看到了AI科技对于元宇宙行业的影响,描绘了想象中未来的一角。那么,让Roblox备受青睐的
生成
式
AI
技术究竟是什么?Roblox选择融合
生成
式
AI
,又能为其平台带来哪些优势? Roblox为何青睐
生成
式
AI
? 每隔几年,在AI领域都能孕育出一个崭新的热点。 在刚刚过去的2022年,令万众频频侧目的新热点无疑就是
生成
式
AI
技术。 早在去年年初,著名科技咨询机构Gartner就发布了一份2022年最有前景的技术预测榜,榜单共列举了12种技术,其中
生成
式
AI
位列榜首。 事实也是如此,在2022年里,一个接一个的
生成
式
AI
模型不断惊艳着人们,一时间,
生成
式
AI
技术风头无两。 随着这些AI生成工具在日常内容创作中的有效性急剧加速,这项技术正处于一个拐点。它能够捕捉创作者的意图,提供丰富的数字编辑功能,帮助创建内容,并完成快速迭代。但是由于目前
生成
式
AI
技术尚未成熟,智能机器人也存在诸多不严谨和不稳定的情况,因此
生成
式
AI
将大概率先在包容性较强的元宇宙娱乐行业大展身手。 这为全新的游戏开发创造了非常高的进入门槛,也为制作一款游戏带来了高昂的成本和漫长的开发周期,这些存在的门槛和成本问题,为
生成
式
AI
在游戏领域的颠覆性创新创造了巨大的机会。 而号称“元宇宙第一股”的大型多人游戏创作平台Roblox自然也不会眼睁睁看着AI市场被抢占,早在几年前就已经开始相关路线的布局。 一些开发者已经在尝试
生成
式
AI
工具,并成功将Midjourney等AI生成技术成功沿用至游戏道具设计,创造了更具创新性的建设方式。凭借AI加持的Roblox拥有了更强的互动性,它大大改善了实时体验,越来越多的玩家涌入,5000万日活用户带来的巨大效应正推动Roblox从谷底慢慢攀升。 然而,Roblox当时已有的AI系统并没有与这个平台完美整合在一起,玩家还是需要大量的后续工作将
生成
式
AI
代码接入平台,而这个过程需要一定的门槛。 生成计算机代码是
生成
式
AI
的首批实际应用之一,虽然微软和亚马逊已在销售可以自动编写有用软件块的工具,但Roblox表明公司可以调整代码编写能力,创建自己的
生成
式
AI
产品。 Roblox的CTO Sturman表示,这种方法对Roblox很有希望,因为其平台上的许多游戏都是由个人或小团队制作的,如果创建了自己的
生成
式
AI
产品,游戏的创作过程会更加容易。并且,这不仅能鼓励团队继续开发高质量游戏,也降低了游戏开发门槛,为Roblox生态提供新鲜的创意。 因此这家公司看到了基于Roblox平台构建
生成
式
AI
工具和API的绝佳机会,为其创作者平台Roblox Studio接入了AI技术,帮助他们构建最具沉浸感的3D体验。 除了生成内容,
生成
式
AI
还可以改变游戏中的行为。 玩家可以在平台访问游戏应用程序编程界面的代码编写AI输入自然措辞的指令,这与《Roblox》所做的事情相似,但它不仅使用AI编码来改变游戏创作,还改变游戏玩法本身。 如今,
生成
式
AI
技术已经适用于Roblox各种游戏的创作过程,创作者通过组合各种形式的3D对象,并通过脚本进行行为连接,并在平台上提供核心行为的通用物理引擎的支持下进行创造。 虽然引擎是平台的基础部分,但这取决于创造者去创造或获取体验中的所有内容。专门的
生成
式
AI
工具不仅可以加快创造者的生产力,还可以显著降低将想法变为现实所需的技术技能门槛。 可以说,比起依赖那些熟悉Roblox Studio和其他3D内容创作工具的人进行开发创作,Roblox正在努力让其每个用户都能成为平台的创作者。 在Roblox的愿景里,他希望将游戏中的体验变成创造体验,即玩家不仅可以创造游戏道具,还能创造一场完整的游戏场景,但要想实现这一愿景,必然需要一套对普通用户来说比当今任何环境都更容易使用的工具——比如语音和文本,或者基于触摸的手势......而这就是成熟的
生成
式
AI
技术能够做到的。 除了AI工具外,Roblox还看到了AI社区本身为平台创作者带来的巨大机遇。 试想一下,创作者可以通过第三方接口将AI技术接入,把他们的独特创作直接提供给Roblox平台用户,通过这种形式建立起来的AI社区天然成为了
生成
式
AI
的力量放大器,它能创建一个生态,并源源不断地为创作者和用户输出有效的内容和工具。 不过,以上都是Roblox目前所设想的美好愿景,其践行的道路充满了未知, 甚至充斥着独特的技术挑战。 首先,AI技术的合法合规、用户需求的满足以及创作机制的迭代更新,这些都对这个拥有强大创造者支撑的市场和经济平台提出了更高的要求。只有深思熟虑、合乎道德地实现
生成
式
AI
,才能驱使Roblox使用多样化和强大的数据集来创造安全、高质量的内容输出。 但这不仅仅是Roblox需要思考的问题,也是AIGC生态需要认真揣摩的内容。 可以看出,深耕于元宇宙游戏市场的Roblox正面临着
生成
式
AI
热潮的压力,能否在这次技术浪潮中乘风破浪意味着这家公司在未来AI+元宇宙市场的话语权。 风向已然开始改变,只有及时调转方向才能拨云见日。
生成
式
AI
的出现预示着新一轮的技术竞赛即将拉开帷幕,作为元宇宙底层技术的它又能为元宇宙带来哪些改变呢?、
生成
式
AI
能为元宇宙带来什么? 不管是ChatGPT还是Midjourney等AI模型,
生成
式
AI
正在改变我们的内容格局。这引发了一些问题,在人们的日常工作中使用
生成
式
AI
是否合乎道德?
生成
式
AI
是炒作还是一项值得深挖的技术? 事实上,AI已经在多个元宇宙平台上得到应用,虚拟世界、虚拟形象的落地以及用户的体验它都会全程参与,与之相比
生成
式
AI
有较小的框架,根据文本或语音输入就能生成整个虚拟世界的资产。 以电子游戏为例,
生成
式
AI
已经在该行业掀起了波澜。 一些电子游戏大作的关键部分可能原本需要几个月或几年的时间进行开发,但有了
生成
式
AI
的加持,只要稍加调整和修饰便可以加速进入到下一个阶段,节省员工迭代演进和最终确定的时间。 而这一点同样适用于元宇宙的场景落地。例如虚拟世界可以基于AI构建,然后初步添加剧情内容,再根据用户需求进行调整。一旦虚拟世界构建完成,
生成
式
AI
还可以通过文本或语音提示自动填充虚拟世界里的内容,这可以节省时间和精力。 可以说,
生成
式
AI
是元宇宙开发的辅助工具,就像电子游戏一样,它将为虚拟空间的创建提供一种辅助补充。 随着科技技术发展至今,有了
生成
式
AI
作为重要的技术补充,真实世界与虚拟世界融合已然成为了未来的重点趋势。 诚然,元宇宙目前的发展受到了不少技术上的阻碍,难以实现实时的沉浸式交互、逼真的高质量图像渲染等,因此大部分应用仍未走到大面积落地的阶段。 然而,元宇宙并不是一家公司就能打造出来的事物,它需要整个科技行业共同参与,借助多项技术合力打造这一目标,而融合
生成
式
AI
注定是其中最为关键的一环。 当然,与许多技术一样,
生成
式
AI
也需要多年的发展,它只是未来世界的一个选项,最终选择权依然在我们自己手里。 【声明】:本文为元宇宙之心运营团队原创,未经允许严禁转载,如需转载请联系我们,文章版权和最终解释权归元宇宙之心所有。 来源:金色财经
lg
...
金色财经
2023-03-02
生成
式
AI
快速发展带动GPU需求显著提升 这两家国内GPU领域领先公司受关注
go
lg
...
dForce集邦咨询最新发布的报告称,
生成
式
AI
是通过GAN、CLIP、Transformer、Diffusion等算法、预训练模型、多模态等AI技术的整合,数据、算力、算法是深耕
生成
式
AI
不可或缺的三大关键。由于
生成
式
AI
必须投入巨量数据进行训练,为缩短训练就得采用大量高效能GPU。以ChatGPT背后的GPT模型为例,其训练参数从2018年约1.2亿个到2020年已暴增至近1,800亿个,TrendForce集邦咨询估GPU需求量预估约2万颗,未来迈向商用将上看3万颗(以NVIDIA A100为主)。
生成
式
AI
发展将成为趋势,将带动GPU需求显著提升,国内相关领域公司望受关注。 景嘉微(300474)公司专注于GPU领域的研发、生产和销售,目前已成功自主研发JM5400、JM7200和JM9系列三代图形处理芯片,实现在专用领域和通用领域的广泛应用。 好利科技(002729)公司投资的合肥曲速主要从事GPU芯片、ADAS视觉芯片的研发和销售。在研GPU芯片采用模块化设计,可根据市场需求通过减少核心数目组合成面向各档次需求的产品。相较于国内同档次产品,其拥有更高的算力,性能、功耗优势明显;相较国外同档次产品,其性价比更高。
lg
...
金融界
2023-03-02
YouTube:将在未来几个月内推出面向创作者的
生成
式
AI
工具
go
lg
...
继续把创作者放在第一位,并为创作者开发
生成
式
AI
工具。Mohan并未提供该工具如何工作的具体细节,但表示该工具将在未来几个月内推出。
lg
...
金融界
2023-03-02
人类生成 or 机器生成?ChatGPT 引发了一场真假辩论
go
lg
...
审; 该方法虽然优于随机猜测,但在所有
生成
式
AI
模型中的工作可靠性并不相同。 对合成文本进行人为调整可能会愚弄 DetectGPT。 这一切对科学意味着什么? 科学出版是研究的命脉,将想法、假设、论据和证据注入全球科学经典。 一些人很快就将 ChatGPT 作为研究助理,一些有争议的论文将 AI 列为合著者。 Meta 甚至推出了一款名为 Galactica 的科学专用文本生成器。 三天后它被撤回了。 在它被使用的这段时间,构建了一段熊在太空旅行的虚构历史。 Tübingen 的马克斯普朗克智能系统研究所的迈克尔·布莱克教授当时在推特上表示,他对 Galactica 对有关他自己研究领域的多项询问的回答感到“困扰”,包括将虚假论文归咎于真正的研究人员。 “在所有情况下,[Galactica] 都是错误的或有偏见的,但听起来是正确和权威的。 我认为这很危险。” 危险来自于看似合理的文本滑入真正的科学提交,用虚假引用充斥文献并永远歪曲经典。 《科学》杂志现在完全禁止生成文本; 《自然》杂志则允许使用它,前提是必须对使用进行了声明,但禁止将其列为共同作者。 话又说回来,大多数人不会查阅高端期刊来指导他们的科学思维。 如果狡猾的人如此倾向,这些聊天机器人可以按需喷出大量引用伪科学,解释为什么疫苗不起作用,或者为什么全球变暖是个骗局。 在线发布的误导性材料可能会被未来的生成人工智能吞噬,产生新的谎言迭代,进一步污染公共话语。 贩卖怀疑的商人肯定已经摩拳擦掌,迫不及待了。 来源:金色财经
lg
...
金色财经
2023-03-01
百度计划于3月16日14时在北京总部召开新闻发布会,主题围绕文心一言
go
lg
...
财报信中重点介绍了百度将在三月份推出的
生成
式
AI
产品文心一言,宣布计划将多项主流业务与文心一言整合。
lg
...
金融界
2023-02-28
彩讯股份:彩讯的RichMail邮件系统等涉及到客服模块的产品均可结合
生成
式
AI
的相关能力
go
lg
...
、智能外呼涉及到客服模块的产品均可结合
生成
式
AI
的相关能力,同时这些业务达到一定规模后也会成为AI训练的语料集。 (来源:界面AI) 声明:本条内容由界面AI生成并授权使用,内容仅供参考,不构成投资建议。AI技术战略支持为有连云。
lg
...
有连云
2023-02-28
文心一言未至先火,百度集团-SW盘中涨逾4%
go
lg
...
公司正在研发文心一言,这是一种新版本的
生成
式
AI
产品,搭载了公司最新的语言大模型技术(LLM)。公司将首先在百度搜索中嵌入文心一言,并将于3月向公众开放。 华西证券发布研报称,百度是少有预训练模型(大模型)语言训练能力的公司,已经经历多次迭代,参数方面,模型基于ERNIE3.0,拥有千亿级参数。预训练方面,具备海量知识沉淀和丰富场景的文心大模型,跨模态方面,已有地理-语言、视觉-语言、语音-语言等模型架构,已覆盖众多方向,例如自然语言处理、机器视觉等其他重大任务,此外,根据IDC数据,目前已有近百万开发者使用文心大模型,生态正在逐步繁荣,合作厂商覆盖科技、教育、工业、媒体、金融等诸多产业。 (来源:界面AI) 声明:本条内容由界面AI生成并授权使用,内容仅供参考,不构成投资建议。AI技术战略支持为有连云。
lg
...
有连云
2023-02-27
上一页
1
•••
201
202
203
204
205
•••
210
下一页
24小时热点
中美重磅!纽约时报:特朗普希望与习近平达成一项更大更好的贸易协议 中美在讨论让领导人互访
lg
...
特朗普、马斯克突传“罕见”行动!《富爸爸》作者:美国经济将崩溃 万物泡沫坚定持仓比特币
lg
...
决策分析:中国言辞发生实质性转变!美国PCE万众瞩目,英伟达意外恐波动8%
lg
...
【直击亚市】特朗普对中国最新攻击!美元热度减弱,德国选举结果出炉了
lg
...
中国国家主席习近平“解冻”科技业!金融时报:中国经济陷入通货紧缩周期
lg
...
最新话题
更多
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
19讨论
#链上风云#
lg
...
60讨论
#VIP会员尊享#
lg
...
1753讨论
#比特币最新消息#
lg
...
905讨论
#CES 2025国际消费电子展#
lg
...
21讨论